转载自网络。
数据库基础知识
数据库知识基础,这部分内容一定要理解记忆。虽然这部分内容只是理论知识,但是非常重要,这是后面学习 MySQL 数据库的基础。PS: 这部分内容由于涉及太多概念性内容,所以参考了维基百科和百度百科相应的介绍。
什么是数据库, 数据库管理系统, 数据库系统, 数据库管理员?
- 数据库 : 数据库(DataBase 简称 DB)就是信息的集合或者说数据库是由数据库管理系统管理的数据的集合。
- 数据库管理系统 : 数据库管理系统(Database Management System 简称 DBMS)是一种操纵和管理数据库的大型软件,通常用于建立、使用和维护数据库。
- 数据库系统 : 数据库系统(Data Base System,简称 DBS)通常由软件、数据库和数据管理员(DBA)组成。
- 数据库管理员 : 数据库管理员(Database Administrator, 简称 DBA)负责全面管理和控制数据库系统。
数据库系统基本构成如下图所示:
什么是元组, 码, 候选码, 主码, 外码, 主属性, 非主属性?
- 元组 : 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。
- 码 :码就是能唯一标识实体的属性,对应表中的列。
- 候选码 : 若关系中的某一属性或属性组的值能唯一的标识一个元组,而其任何、子集都不能再标识,则称该属性组为候选码。例如:在学生实体中,“学号”是能唯一的区分学生实体的,同时又假设“姓名”、“班级”的属性组合足以区分学生实体,那么{学号}和{姓名,班级}都是候选码。
- 主码 : 主码也叫主键。主码是从候选码中选出来的。 一个实体集中只能有一个主码,但可以有多个候选码。
- 外码 : 外码也叫外键。如果一个关系中的一个属性是另外一个关系中的主码则这个属性为外码。
- 主属性 : 候选码中出现过的属性称为主属性。比如关系 工人(工号,身份证号,姓名,性别,部门). 显然工号和身份证号都能够唯一标示这个关系,所以都是候选码。工号、身份证号这两个属性就是主属性。如果主码是一个属性组,那么属性组中的属性都是主属性。
- 非主属性: 不包含在任何一个候选码中的属性称为非主属性。比如在关系——学生(学号,姓名,年龄,性别,班级)中,主码是“学号”,那么其他的“姓名”、“年龄”、“性别”、“班级”就都可以称为非主属性。
主键和外键有什么区别?
- 主键(主码) :主键用于唯一标识一个元组,不能有重复,不允许为空。一个表只能有一个主键。
- 外键(外码) :外键用来和其他表建立联系用,外键是另一表的主键,外键是可以有重复的,可以是空值。一个表可以有多个外键。
为什么不推荐使用外键与级联?
对于外键和级联,阿里巴巴开发手册这样说到:
【强制】不得使用外键与级联,一切外键概念必须在应用层解决。
说明: 以学生和成绩的关系为例,学生表中的 student_id 是主键,那么成绩表中的 student_id 则为外键。如果更新学生表中的 student_id,同时触发成绩表中的 student_id 更新,即为级联更新。外键与级联更新适用于单机低并发,不适合分布式、高并发集群; 级联更新是强阻塞,存在数据库更新风暴的风 险; 外键影响数据库的插入速度
为什么不要用外键呢?大部分人可能会这样回答:
- 增加了复杂性: a. 每次做DELETE 或者UPDATE都必须考虑外键约束,会导致开发的时候很痛苦, 测试数据极为不方便; b. 外键的主从关系是定的,假如那天需求有变化,数据库中的这个字段根本不需要和其他表有关联的话就会增加很多麻烦。
- 增加了额外工作: 数据库需要增加维护外键的工作,比如当我们做一些涉及外键字段的增,删,更新操作之后,需要触发相关操作去检查,保证数据的的一致性和正确性,这样会不得不消耗资源;(个人觉得这个不是不用外键的原因,因为即使你不使用外键,你在应用层面也还是要保证的。所以,我觉得这个影响可以忽略不计。)
- 外键还会因为需要请求对其他表内部加锁而容易出现死锁情况;
- 对分库分表不友好 :因为分库分表下外键是无法生效的。
- ......
我个人觉得上面这种回答不是特别的全面,只是说了外键存在的一个常见的问题。实际上,我们知道外键也是有很多好处的,比如:
- 保证了数据库数据的一致性和完整性;
- 级联操作方便,减轻了程序代码量;
- ......
所以说,不要一股脑的就抛弃了外键这个概念,既然它存在就有它存在的道理,如果系统不涉及分库分表,并发量不是很高的情况还是可以考虑使用外键的。
什么是 ER 图?
我们做一个项目的时候一定要试着画 ER 图来捋清数据库设计,这个也是面试官问你项目的时候经常会被问道的。
E-R 图 也称实体-联系图(Entity Relationship Diagram),提供了表示实体类型、属性和联系的方法,用来描述现实世界的概念模型。 它是描述现实世界关系概念模型的有效方法。 是表示概念关系模型的一种方式。
下图是一个学生选课的 ER 图,每个学生可以选若干门课程,同一门课程也可以被若干人选择,所以它们之间的关系是多对多(M: N)。另外,还有其他两种关系是:1 对 1(1:1)、1 对多(1: N)。
我们试着将上面的 ER 图转换成数据库实际的关系模型(实际设计中,我们通常会将任课教师也作为一个实体来处理):
数据库范式了解吗?
1NF(第一范式)
属性(对应于表中的字段)不能再被分割,也就是这个字段只能是一个值,不能再分为多个其他的字段了。1NF 是所有关系型数据库的最基本要求 ,也就是说关系型数据库中创建的表一定满足第一范式。
2NF(第二范式)
2NF 在 1NF 的基础之上,消除了非主属性对于码的部分函数依赖。如下图所示,展示了第一范式到第二范式的过渡。第二范式在第一范式的基础上增加了一个列,这个列称为主键,非主属性都依赖于主键。
一些重要的概念:
- 函数依赖(functional dependency) :若在一张表中,在属性(或属性组)X 的值确定的情况下,必定能确定属性 Y 的值,那么就可以说 Y 函数依赖于 X,写作 X → Y。
- 部分函数依赖(partial functional dependency) :如果 X→Y,并且存在 X 的一个真子集 X0,使得 X0→Y,则称 Y 对 X 部分函数依赖。比如学生基本信息表 R 中(学号,身份证号,姓名)当然学号属性取值是唯一的,在 R 关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号);
- 完全函数依赖(Full functional dependency) :在一个关系中,若某个非主属性数据项依赖于全部关键字称之为完全函数依赖。比如学生基本信息表 R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在 R 关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级);
- 传递函数依赖 : 在关系模式 R(U)中,设 X,Y,Z 是 U 的不同的属性子集,如果 X 确定 Y、Y 确定 Z,且有 X 不包含 Y,Y 不确定 X,(X∪Y)∩Z=空集合,则称 Z 传递函数依赖(transitive functional dependency) 于 X。传递函数依赖会导致数据冗余和异常。传递函数依赖的 Y 和 Z 子集往往同属于某一个事物,因此可将其合并放到一个表中。比如在关系 R(学号 , 姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖。。
3NF(第三范式)
3NF 在 2NF 的基础之上,消除了非主属性对于码的传递函数依赖 。符合 3NF 要求的数据库设计,基本上解决了数据冗余过大,插入异常,修改异常,删除异常的问题。比如在关系 R(学号 , 姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖,所以该表的设计,不符合 3NF 的要求。
总结
- 1NF:属性不可再分。
- 2NF:1NF 的基础之上,消除了非主属性对于码的部分函数依赖。
- 3NF:3NF 在 2NF 的基础之上,消除了非主属性对于码的传递函数依赖 。
什么是存储过程?
我们可以把存储过程看成是一些 SQL 语句的集合,中间加了点逻辑控制语句。存储过程在业务比较复杂的时候是非常实用的,比如很多时候我们完成一个操作可能需要写一大串 SQL 语句,这时候我们就可以写有一个存储过程,这样也方便了我们下一次的调用。存储过程一旦调试完成通过后就能稳定运行,另外,使用存储过程比单纯 SQL 语句执行要快,因为存储过程是预编译过的。
存储过程在互联网公司应用不多,因为存储过程难以调试和扩展,而且没有移植性,还会消耗数据库资源。
阿里巴巴 Java 开发手册里要求禁止使用存储过程。
drop、delete 与 truncate 区别?
用法不同
- drop(丢弃数据):
drop table 表名
,直接将表都删除掉,在删除表的时候使用。 - truncate (清空数据) :
truncate table 表名
,只删除表中的数据,再插入数据的时候自增长 id 又从 1 开始,在清空表中数据的时候使用。 - delete(删除数据) :
delete from 表名 where 列名=值
,删除某一列的数据,如果不加 where 子句和truncate table 表名
作用类似。
truncate 和不带 where 子句的 delete、以及 drop 都会删除表内的数据,但是 truncate 和 delete 只删除数据不删除表的结构(定义),执行 drop 语句,此表的结构也会删除,也就是执行 drop 之后对应的表不复存在。
属于不同的数据库语言
truncate 和 drop 属于 DDL(数据定义语言)语句,操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。而 delete 语句是 DML (数据库操作语言)语句,这个操作会放到 rollback segement 中,事务提交之后才生效。
DML 语句和 DDL 语句区别:
- DML 是数据库操作语言(Data Manipulation Language)的缩写,是指对数据库中表记录的操作,主要包括表记录的插入(insert)、更新(update)、删除(delete)和查询(select),是开发人员日常使用最频繁的操作。
- DDL (Data Definition Language)是数据定义语言的缩写,简单来说,就是对数据库内部的对象进行创建、删除、修改的操作语言。它和 DML 语言的最大区别是 DML 只是对表内部数据的操作,而不涉及到表的定义、结构的修改,更不会涉及到其他对象。DDL 语句更多的被数据库管理员(DBA)所使用,一般的开发人员很少使用。
执行速度不同
一般来说:drop>truncate>delete(这个我没有设计测试过)。
数据库设计通常分为哪几步?
- 需求分析 : 分析用户的需求,包括数据、功能和性能需求。
- 概念结构设计 : 主要采用 E-R 模型进行设计,包括画 E-R 图。
- 逻辑结构设计 : 通过将 E-R 图转换成表,实现从 E-R 模型到关系模型的转换。
- 物理结构设计 : 主要是为所设计的数据库选择合适的存储结构和存取路径。
- 数据库实施 : 包括编程、测试和试运行
- 数据库的运行和维护 : 系统的运行与数据库的日常维护。
MySQL 基础
关系型数据库介绍
顾名思义,关系型数据库就是一种建立在关系模型的基础上的数据库。关系模型表明了数据库中所存储的数据之间的联系(一对一、一对多、多对多)。
关系型数据库中,我们的数据都被存放在了各种表中(比如用户表),表中的每一行就存放着一条数据(比如一个用户的信息)。
大部分关系型数据库都使用 SQL 来操作数据库中的数据。并且,大部分关系型数据库都支持事务的四大特性(ACID)。
有哪些常见的关系型数据库呢?
MySQL、PostgreSQL、Oracle、SQL Server、SQLite(微信本地的聊天记录的存储就是用的 SQLite) ......。
MySQL 介绍
MySQL 是一种关系型数据库,主要用于持久化存储我们的系统中的一些数据比如用户信息。
由于 MySQL 是开源免费并且比较成熟的数据库,因此,MySQL 被大量使用在各种系统中。任何人都可以在 GPL(General Public License) 的许可下下载并根据个性化的需要对其进行修改。MySQL 的默认端口号是3306。
存储引擎
存储引擎相关的命令
查看 MySQL 提供的所有存储引擎
mysql> show engines;
从上图我们可以查看出 MySQL 当前默认的存储引擎是 InnoDB,并且在 5.7 版本所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。
查看 MySQL 当前默认的存储引擎
我们也可以通过下面的命令查看默认的存储引擎。
mysql> show variables like '%storage_engine%';
查看表的存储引擎
show table status like "table_name" ;
MyISAM 和 InnoDB 的区别
MySQL 5.5 之前,MyISAM 引擎是 MySQL 的默认存储引擎,可谓是风光一时。
虽然,MyISAM 的性能还行,各种特性也还不错(比如全文索引、压缩、空间函数等)。但是,MyISAM 不支持事务和行级锁,而且最大的缺陷就是崩溃后无法安全恢复。
5.5 版本之后,MySQL 引入了 InnoDB(事务性数据库引擎),MySQL 5.5 版本后默认的存储引擎为 InnoDB。小伙子,一定要记好这个 InnoDB ,你每次使用 MySQL 数据库都是用的这个存储引擎吧?
言归正传!咱们下面还是来简单对比一下两者:
1.是否支持行级锁
MyISAM 只有表级锁(table-level locking),而 InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。
也就说,MyISAM 一锁就是锁住了整张表,这在并发写的情况下是多么滴憨憨啊!这也是为什么 InnoDB 在并发写的时候,性能更牛皮了!
2.是否支持事务
MyISAM 不提供事务支持。
InnoDB 提供事务支持,具有提交(commit)和回滚(rollback)事务的能力。
3.是否支持外键
MyISAM 不支持,而 InnoDB 支持。
🌈 拓展一下:
一般我们也是不建议在数据库层面使用外键的,应用层面可以解决。不过,这样会对数据的一致性造成威胁。具体要不要使用外键还是要根据你的项目来决定。
4.是否支持数据库异常崩溃后的安全恢复
MyISAM 不支持,而 InnoDB 支持。
使用 InnoDB 的数据库在异常崩溃后,数据库重新启动的时候会保证数据库恢复到崩溃前的状态。这个恢复的过程依赖于 redo log
。
🌈 拓展一下:
- MySQL InnoDB 引擎使用 redo log(重做日志) 保证事务的持久性,使用 undo log(回滚日志) 来保证事务的原子性。
- MySQL InnoDB 引擎通过 锁机制、MVCC 等手段来保证事务的隔离性( 默认支持的隔离级别是
REPEATABLE-READ
)。 - 保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。
5.是否支持 MVCC
MyISAM 不支持,而 InnoDB 支持。
讲真,这个对比有点废话,毕竟 MyISAM 连行级锁都不支持。
MVCC 可以看作是行级锁的一个升级,可以有效减少加锁操作,提供性能。
关于 MyISAM 和 InnoDB 的选择问题
大多数时候我们使用的都是 InnoDB 存储引擎,在某些读密集的情况下,使用 MyISAM 也是合适的。不过,前提是你的项目不介意 MyISAM 不支持事务、崩溃恢复等缺点(可是~我们一般都会介意啊!)。
《MySQL 高性能》上面有一句话这样写到:
不要轻易相信“MyISAM 比 InnoDB 快”之类的经验之谈,这个结论往往不是绝对的。在很多我们已知场景中,InnoDB 的速度都可以让 MyISAM 望尘莫及,尤其是用到了聚簇索引,或者需要访问的数据都可以放入内存的应用。
一般情况下我们选择 InnoDB 都是没有问题的,但是某些情况下你并不在乎可扩展能力和并发能力,也不需要事务支持,也不在乎崩溃后的安全恢复问题的话,选择 MyISAM 也是一个不错的选择。但是一般情况下,我们都是需要考虑到这些问题的。
因此,对于咱们日常开发的业务系统来说,你几乎找不到什么理由再使用 MyISAM 作为自己的 MySQL 数据库的存储引擎。
锁机制与 InnoDB 锁算法
MyISAM 和 InnoDB 存储引擎使用的锁:
- MyISAM 采用表级锁(table-level locking)。
- InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁
表级锁和行级锁对比:
- 表级锁: MySQL 中锁定 粒度最大 的一种锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。其锁定粒度最大,触发锁冲突的概率最高,并发度最低,MyISAM 和 InnoDB 引擎都支持表级锁。
- 行级锁: MySQL 中锁定 粒度最小 的一种锁,只针对当前操作的行进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。
InnoDB 存储引擎的锁的算法有三种:
- Record lock:记录锁,单个行记录上的锁
- Gap lock:间隙锁,锁定一个范围,不包括记录本身
- Next-key lock:record+gap 临键锁,锁定一个范围,包含记录本身
查询缓存
执行查询语句的时候,会先查询缓存。不过,MySQL 8.0 版本后移除,因为这个功能不太实用
my.cnf
加入以下配置,重启 MySQL 开启查询缓存
query_cache_type=1
query_cache_size=600000
set global query_cache_type=1;
set global query_cache_size=600000;
(查询缓存不命中的情况:(3))缓存建立之后,MySQL 的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。
缓存虽然能够提升数据库的查询性能,但是缓存同时也带来了额外的开销,每次查询后都要做一次缓存操作,失效后还要销毁。 因此,开启查询缓存要谨慎,尤其对于写密集的应用来说更是如此。如果开启,要注意合理控制缓存空间大小,一般来说其大小设置为几十 MB 比较合适。此外,还可以通过 sql_cache 和 sql_no_cache 来控制某个查询语句是否需要缓存:
select sql_no_cache count(*) from usr;
事务
何为事务?
一言蔽之,事务是逻辑上的一组操作,要么都执行,要么都不执行。
可以简单举一个例子不?
事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账 1000 元,这个转账会涉及到两个关键操作就是:
- 将小明的余额减少 1000 元
- 将小红的余额增加 1000 元。
事务会把这两个操作就可以看成逻辑上的一个整体,这个整体包含的操作要么都成功,要么都要失败。
这样就不会出现小明余额减少而小红的余额却并没有增加的情况。
何为数据库事务?
数据库事务在我们日常开发中接触的最多了。如果你的项目属于单体架构的话,你接触到的往往就是数据库事务了。
平时,我们在谈论事务的时候,如果没有特指分布式事务,往往指的就是数据库事务。
那数据库事务有什么作用呢?
简单来说:数据库事务可以保证多个对数据库的操作(也就是 SQL 语句)构成一个逻辑上的整体。构成这个逻辑上的整体的这些数据库操作遵循:要么全部执行成功,要么全部不执行 。
# 开启一个事务
START TRANSACTION;
# 多条 SQL 语句
SQL1,SQL2...
## 提交事务
COMMIT;
另外,关系型数据库(例如:MySQL
、SQL Server
、Oracle
等)事务都有 ACID 特性:
何为 ACID 特性呢?
- 原子性(
Atomicity
) : 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用; - 一致性(
Consistency
): 执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的; - 隔离性(
Isolation
): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的; - 持久性(
Durability
): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
数据事务的实现原理呢?
我们这里以 MySQL 的 InnoDB 引擎为例来简单说一下。
MySQL InnoDB 引擎使用 redo log(重做日志) 保证事务的持久性,使用 undo log(回滚日志) 来保证事务的原子性。
MySQL InnoDB 引擎通过 锁机制、MVCC 等手段来保证事务的隔离性( 默认支持的隔离级别是 REPEATABLE-READ
)。
保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。
并发事务带来哪些问题?
在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。
- 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
- 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 修改 A=A-1,事务 2 也修改 A=A-1,最终结果 A=19,事务 1 的修改被丢失。
- 不可重复读(Unrepeatable read): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
- 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。
不可重复读和幻读区别:
不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除比如多次读取一条记录发现记录增多或减少了。
事务隔离级别有哪些?
SQL 标准定义了四个隔离级别:
- READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
- READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
- REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
- SERIALIZABLE(可串行化): 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
隔离级别 | 脏读 | 不可重复读 | 幻读 |
---|---|---|---|
READ-UNCOMMITTED | √ | √ | √ |
READ-COMMITTED | × | √ | √ |
REPEATABLE-READ | × | × | √ |
SERIALIZABLE | × | × | × |
MySQL 的默认隔离级别是什么?
MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;
命令来查看,MySQL 8.0 该命令改为SELECT @@transaction_isolation;
mysql> SELECT @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
这里需要注意的是:与 SQL 标准不同的地方在于 InnoDB 存储引擎在 REPEATABLE-READ(可重读) 事务隔离级别下使用的是 Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以说 InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要求,即达到了 SQL 标准的 SERIALIZABLE(可串行化) 隔离级别。
🐛 问题更正:MySQL InnoDB 的 REPEATABLE-READ(可重读)并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是 Next-Key Locks。
因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是 READ-COMMITTED(读取提交内容) ,但是你要知道的是 InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读) 并不会有任何性能损失。
InnoDB 存储引擎在 分布式事务 的情况下一般会用到 SERIALIZABLE(可串行化) 隔离级别。
🌈 拓展一下(以下内容摘自《MySQL 技术内幕:InnoDB 存储引擎(第 2 版)》7.7 章):
InnoDB 存储引擎提供了对 XA 事务的支持,并通过 XA 事务来支持分布式事务的实现。分布式事务指的是允许多个独立的事务资源(transactional resources)参与到一个全局的事务中。事务资源通常是关系型数据库系统,但也可以是其他类型的资源。全局事务要求在其中的所有参与的事务要么都提交,要么都回滚,这对于事务原有的 ACID 要求又有了提高。另外,在使用分布式事务时,InnoDB 存储引擎的事务隔离级别必须设置为 SERIALIZABLE。
MySQL 字符集
MySQL 支持很多种字符编码的方式,比如 UTF-8、GB2312、GBK、BIG5。
你可以通过 SHOW CHARSET
命令来查看。
通常情况下,我们建议使用 UTF-8 作为默认的字符编码方式。
不过,这里有一个小坑。
MySQL 字符编码集中有两套 UTF-8 编码实现:
utf8
:utf8
编码只支持1-3
个字节 。 在utf8
编码中,中文是占 3 个字节,其他数字、英文、符号占一个字节。但 emoji 符号占 4 个字节,一些较复杂的文字、繁体字也是 4 个字节。utf8mb4
: UTF-8 的完整实现,正版!最多支持使用 4 个字节表示字符,因此,可以用来存储 emoji 符号。
为什么有两套 UTF-8 编码实现呢? 原因如下:
因此,如果你需要存储emoji
类型的数据或者一些比较复杂的文字、繁体字到 MySQL 数据库的话,数据库的编码一定要指定为utf8mb4
而不是utf8
,要不然存储的时候就会报错了。
演示一下吧!(环境:MySQL 5.7+)
建表语句如下,我们指定数据库 CHARSET 为 utf8
。
CREATE TABLE `user` (
`id` varchar(66) CHARACTER SET utf8mb4 NOT NULL,
`name` varchar(33) CHARACTER SET utf8mb4 NOT NULL,
`phone` varchar(33) CHARACTER SET utf8mb4 DEFAULT NULL,
`password` varchar(100) CHARACTER SET utf8mb4 DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `user` (`id`, `name`, `phone`, `password`)
VALUES
('A00003', 'guide哥😘😘😘', '181631312312', '123456');
报错信息如下:
Incorrect string value: '\xF0\x9F\x98\x98\xF0\x9F...' for column 'name' at row 1
参考
- 《高性能 MySQL》
- https://www.omnisci.com/technical-glossary/relational-database