转载自网络。
内容列表
- MQ
- RabbitMQ
- Kafka
- 1. Apache Kafka是什么?
- 2. Kafka 的设计是什么样的?
- 3. Kafka 如何保证高可用?
- 4. Kafka 消息是采用 Pull 模式,还是 Push 模式?
- 5. Kafka 与传统消息系统之间的区别
- 6. 什么是消费者组?
- 7. 在Kafka中,ZooKeeper的作用是什么?
- 8. 解释下Kafka中位移(offset)的作用
- 9. kafka 为什么那么快?
- 10. kafka producer发送数据,ack为0,1,-1分别是什么意思?
- 11. Kafka如何保证消息不丢失?
- 13. Kafka 如何保证消息的顺序性
- 14. Kafka中的ISR、AR代表什么?ISR的伸缩指什么?
- 15. 描述下 Kafka 中的领导者副本(Leader Replica)和追随者副本(Follower Replica)的区别
- 16. 分区Leader选举策略有几种?
- 17. Kafka的哪些场景中使用了零拷贝(Zero Copy)?
- 18. 为什么Kafka不支持读写分离?
- 参考
MQ
为什么使用MQ?
使用MQ的场景很多,主要有三个:解耦、异步、削峰。
- 解耦:假设现在,日志不光要插入到数据库里,还要在硬盘中增加文件类型的日志,同时,一些关键日志还要通过邮件的方式发送给指定的人。那么,如果按照原来的逻辑,A可能就需要在原来的代码上做扩展,除了B服务,还要加上日志文件的存储和日志邮件的发送。但是,如果你使用了MQ,那么,A服务是不需要做更改的,它还是将消息放到MQ中即可,其它的服务,无论是原来的B服务还是新增的日志文件存储服务或日志邮件发送服务,都直接从MQ中获取消息并处理即可。这就是解耦,它的好处是提高系统灵活性,扩展性。
- 异步:可以将一些非核心流程,如日志,短信,邮件等,通过MQ的方式异步去处理。这样做的好处是缩短主流程的响应时间,提升用户体验。
- 削峰:MQ的本质就是业务的排队。所以,面对突然到来的高并发,MQ也可以不用慌忙,先排好队,不要着急,一个一个来。削峰的好处就是避免高并发压垮系统的关键组件,如某个核心服务或数据库等。
下面附场景解释:
解耦
场景:A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃......
在这个场景中,A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?头发都白了啊!
如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。
总结:通过一个 MQ,Pub/Sub 发布订阅消息这么一个模型,A 系统就跟其它系统彻底解耦了。
异步
场景:A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。
一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。
如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了。
削峰
场景:每天 0:00 到 12:00,A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL 的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k 条 SQL。
使用 MQ,每秒 5k 个请求写入 MQ,A 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。
这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。
消息队列的缺点
1、 系统可用性降低
系统引入的外部依赖越多,越容易挂掉。
2、 系统复杂度提高
加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。
3、 一致性问题
A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,这就数据不一致了。
Kafka、ActiveMQ、RabbitMQ、RocketMQ 有什么优缺点?
特性 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
---|---|---|---|---|
开发语言 | java | erlang | java | scala |
单机吞吐量 | 万级,比 RocketMQ、Kafka 低一个数量级 | 同 ActiveMQ | 10 万级,支撑高吞吐 | 10 万级,高吞吐,一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
topic 数量对吞吐量的影响 | topic 可以达到几百/几千的级别,吞吐量会有较小幅度的下降,这是 RocketMQ 的一大优势,在同等机器下,可以支撑大量的 topic | topic 从几十到几百个时候,吞吐量会大幅度下降,在同等机器下,Kafka 尽量保证 topic 数量不要过多,如果要支撑大规模的 topic,需要增加更多的机器资源 | ||
时效性 | ms 级 | 微秒级,这是 RabbitMQ 的一大特点,延迟最低 | ms 级 | 延迟在 ms 级以内 |
可用性 | 高,基于主从架构实现高可用 | 同 ActiveMQ | 非常高,分布式架构 | 非常高,分布式,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 | 基本不丢 | 经过参数优化配置,可以做到 0 丢失 | 同 RocketMQ |
功能支持 | MQ 领域的功能极其完备 | 基于 erlang 开发,并发能力很强,性能极好,延时很低 | MQ 功能较为完善,还是分布式的,扩展性好 | 功能较为简单,主要支持简单的 MQ 功能,在大数据领域的实时计算以及日志采集被大规模使用 |
社区活跃度 | 低 | 很高 | 一般 | 很高 |
- 中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;
- 大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。
- 大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,几乎是全世界这个领域的事实性规范。
RabbitMQ
1. RabbitMQ是什么?
RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件)。RabbitMQ服务器是用Erlang语言编写的,而群集和故障转移是构建在开放电信平台框架上的。所有主要的编程语言均有与代理接口通讯的客户端库。
2. RabbitMQ特点?
可靠性: RabbitMQ使用一些机制来保证可靠性, 如持久化、传输确认及发布确认等。
灵活的路由 : 在消息进入队列之前,通过交换器来路由消息。对于典型的路由功能, RabbitMQ 己经提供了一些内置的交换器来实现。针对更复杂的路由功能,可以将多个 交换器绑定在一起, 也可以通过插件机制来实现自己的交换器。
扩展性: 多个RabbitMQ节点可以组成一个集群,也可以根据实际业务情况动态地扩展 集群中节点。
高可用性 : 队列可以在集群中的机器上设置镜像,使得在部分节点出现问题的情况下队 列仍然可用。
多种协议: RabbitMQ除了原生支持AMQP协议,还支持STOMP, MQTT等多种消息 中间件协议。
多语言客户端 :RabbitMQ 几乎支持所有常用语言,比如 Java、 Python、 Ruby、 PHP、 C#、 JavaScript 等。
管理界面 : RabbitMQ 提供了一个易用的用户界面,使得用户可以监控和管理消息、集 群中的节点等。
令插件机制: RabbitMQ 提供了许多插件 , 以实现从多方面进行扩展,当然也可以编写自 己的插件。
3. AMQP是什么?
RabbitMQ就是 AMQP 协议的 Erlang
的实现(当然 RabbitMQ 还支持 STOMP2
、 MQTT3
等协议 ) AMQP 的模型架构 和 RabbitMQ 的模型架构是一样的,生产者将消息发送给交换器,交换器和队列绑定 。
RabbitMQ 中的交换器、交换器类型、队列、绑定、路由键等都是遵循的 AMQP 协议中相 应的概念。目前 RabbitMQ 最新版本默认支持的是 AMQP 0-9-1。
4. AMQP的3层协议?
Module Layer:协议最高层,主要定义了一些客户端调用的命令,客户端可以用这些命令实现自己的业务逻辑。
Session Layer:中间层,主要负责客户端命令发送给服务器,再将服务端应答返回客户端,提供可靠性同步机制和错误处理。
TransportLayer:最底层,主要传输二进制数据流,提供帧的处理、信道服用、错误检测和数据表示等。
5. 说说Broker服务节点、Queue队列、Exchange交换器?
- Broker可以看做RabbitMQ的服务节点。一般情况下,一个Broker可以看做一个RabbitMQ服务器。
- Queue:RabbitMQ的内部对象,用于存储消息。多个消费者可以订阅同一队列,这时队列中的消息会被平摊(轮询)给多个消费者进行处理。
- Exchange:生产者将消息发送到交换器,由交换器将消息路由到一个或者多个队列中。当路由不到时,或返回给生产者或直接丢弃。
6. 如何保证消息的可靠性?
分三点:
- 生产者到RabbitMQ:事务机制和Confirm机制,注意:事务机制和 Confirm 机制是互斥的,两者不能共存,会导致 RabbitMQ 报错。
- RabbitMQ自身:持久化、集群、普通模式、镜像模式。
- RabbitMQ到消费者:basicAck机制、死信队列、消息补偿机制。
7. 生产者消息运转的流程?
-
Producer
先连接到Broker,建立连接Connection,开启一个信道(Channel)。 -
Producer
声明一个交换器并设置好相关属性。 -
Producer
声明一个队列并设置好相关属性。 -
Producer
通过路由键将交换器和队列绑定起来。 -
Producer
发送消息到Broker
,其中包含路由键、交换器等信息。 -
相应的交换器根据接收到的路由键查找匹配的队列。
-
如果找到,将消息存入对应的队列,如果没有找到,会根据生产者的配置丢弃或者退回给生产者。
-
关闭信道。
-
管理连接。
8.消费者接收消息过程?
-
Consumer
先连接到Broker
,建立连接Connection
,开启一个信道(Channel
)。 -
向
Broker
请求消费响应的队列中消息,可能会设置响应的回调函数。 -
等待
Broker
回应并投递相应队列中的消息,接收消息。 -
消费者确认收到的消息,
ack
。 -
RabbitMq
从队列中删除已经确定的消息。 -
关闭信道。
-
关闭连接。
9. 生产者如何将消息可靠投递到RabbitMQ?
-
Client发送消息给MQ
-
MQ将消息持久化后,发送Ack消息给Client,此处有可能因为网络问题导致Ack消息无法发送到Client,那么Client在等待超时后,会重传消息;
-
Client收到Ack消息后,认为消息已经投递成功。
10. RabbitMQ如何将消息可靠投递到消费者?
-
MQ将消息push给Client(或Client来pull消息)
-
Client得到消息并做完业务逻辑
-
Client发送Ack消息给MQ,通知MQ删除该消息,此处有可能因为网络问题导致Ack失败,那么Client会重复消息,这里就引出消费幂等的问题;
-
MQ将已消费的消息删除。
11. 如何保证RabbitMQ消息队列的高可用?
RabbitMQ 有三种模式:单机模式
,普通集群模式
,镜像集群模式
。
单机模式:就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式
普通集群模式:意思就是在多台机器上启动多个RabbitMQ实例,每个机器启动一个。
镜像集群模式:这种模式,才是所谓的RabbitMQ的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据(元数据指RabbitMQ的配置数据)还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
12. RabbitMQ 核心概念
RabbitMQ 整体上是一个生产者与消费者模型,主要负责接收、存储和转发消息。可以把消息传递的过程想象成:当你将一个包裹送到邮局,邮局会暂存并最终将邮件通过邮递员送到收件人的手上,RabbitMQ就好比由邮局、邮箱和邮递员组成的一个系统。从计算机术语层面来说,RabbitMQ 模型更像是一种交换机模型。
下面再来看看图1—— RabbitMQ 的整体模型架构。
下面我会一一介绍上图中的一些概念。
12.1 Producer(生产者) 和 Consumer(消费者)
- Producer(生产者) :生产消息的一方(邮件投递者)
- Consumer(消费者) :消费消息的一方(邮件收件人)
消息一般由 2 部分组成:消息头(或者说是标签 Label)和 消息体。消息体也可以称为 payload ,消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括 routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可能需要持久性存储)等。生产者把消息交由 RabbitMQ 后,RabbitMQ 会根据消息头把消息发送给感兴趣的 Consumer(消费者)。
12.2 Exchange(交换器)
在 RabbitMQ 中,消息并不是直接被投递到 Queue(消息队列) 中的,中间还必须经过 Exchange(交换器) 这一层,Exchange(交换器) 会把我们的消息分配到对应的 Queue(消息队列) 中。
Exchange(交换器) 用来接收生产者发送的消息并将这些消息路由给服务器中的队列中,如果路由不到,或许会返回给 Producer(生产者) ,或许会被直接丢弃掉 。这里可以将RabbitMQ中的交换器看作一个简单的实体。
RabbitMQ 的 Exchange(交换器) 有4种类型,不同的类型对应着不同的路由策略:direct(默认),fanout, topic, 和 headers,不同类型的Exchange转发消息的策略有所区别。这个会在介绍 Exchange Types(交换器类型) 的时候介绍到。
Exchange(交换器) 示意图如下:
生产者将消息发给交换器的时候,一般会指定一个 RoutingKey(路由键),用来指定这个消息的路由规则,而这个 RoutingKey 需要与交换器类型和绑定键(BindingKey)联合使用才能最终生效。
RabbitMQ 中通过 Binding(绑定) 将 Exchange(交换器) 与 Queue(消息队列) 关联起来,在绑定的时候一般会指定一个 BindingKey(绑定建) ,这样 RabbitMQ 就知道如何正确将消息路由到队列了,如下图所示。一个绑定就是基于路由键将交换器和消息队列连接起来的路由规则,所以可以将交换器理解成一个由绑定构成的路由表。Exchange 和 Queue 的绑定可以是多对多的关系。
Binding(绑定) 示意图:
生产者将消息发送给交换器时,需要一个RoutingKey,当 BindingKey 和 RoutingKey 相匹配时,消息会被路由到对应的队列中。在绑定多个队列到同一个交换器的时候,这些绑定允许使用相同的 BindingKey。BindingKey 并不是在所有的情况下都生效,它依赖于交换器类型,比如fanout类型的交换器就会无视,而是将消息路由到所有绑定到该交换器的队列中。
12.3 Queue(消息队列)
Queue(消息队列) 用来保存消息直到发送给消费者。它是消息的容器,也是消息的终点。一个消息可投入一个或多个队列。消息一直在队列里面,等待消费者连接到这个队列将其取走。
RabbitMQ 中消息只能存储在 队列 中,这一点和 Kafka 这种消息中间件相反。Kafka 将消息存储在 topic(主题) 这个逻辑层面,而相对应的队列逻辑只是topic实际存储文件中的位移标识。 RabbitMQ 的生产者生产消息并最终投递到队列中,消费者可以从队列中获取消息并消费。
多个消费者可以订阅同一个队列,这时队列中的消息会被平均分摊(Round-Robin,即轮询)给多个消费者进行处理,而不是每个消费者都收到所有的消息并处理,这样避免消息被重复消费。
RabbitMQ 不支持队列层面的广播消费,如果有广播消费的需求,需要在其上进行二次开发,这样会很麻烦,不建议这样做。
12.4 Broker(消息中间件的服务节点)
对于 RabbitMQ 来说,一个 RabbitMQ Broker 可以简单地看作一个 RabbitMQ 服务节点,或者RabbitMQ服务实例。大多数情况下也可以将一个 RabbitMQ Broker 看作一台 RabbitMQ 服务器。
下图展示了生产者将消息存入 RabbitMQ Broker,以及消费者从Broker中消费数据的整个流程。
这样图1中的一些关于 RabbitMQ 的基本概念我们就介绍完毕了,下面再来介绍一下 Exchange Types(交换器类型) 。
12.5 Exchange Types(交换器类型)
RabbitMQ 常用的 Exchange Type 有 fanout、direct、topic、headers 这四种(AMQP规范里还提到两种 Exchange Type,分别为 system 与 自定义,这里不予以描述)。
① fanout
fanout 类型的Exchange路由规则非常简单,它会把所有发送到该Exchange的消息路由到所有与它绑定的Queue中,不需要做任何判断操作,所以 fanout 类型是所有的交换机类型里面速度最快的。fanout 类型常用来广播消息。
② direct
direct 类型的Exchange路由规则也很简单,它会把消息路由到那些 Bindingkey 与 RoutingKey 完全匹配的 Queue 中。
以上图为例,如果发送消息的时候设置路由键为“warning”,那么消息会路由到 Queue1 和 Queue2。如果在发送消息的时候设置路由键为"Info”或者"debug”,消息只会路由到Queue2。如果以其他的路由键发送消息,则消息不会路由到这两个队列中。
direct 类型常用在处理有优先级的任务,根据任务的优先级把消息发送到对应的队列,这样可以指派更多的资源去处理高优先级的队列。
③ topic
前面讲到direct类型的交换器路由规则是完全匹配 BindingKey 和 RoutingKey ,但是这种严格的匹配方式在很多情况下不能满足实际业务的需求。topic类型的交换器在匹配规则上进行了扩展,它与 direct 类型的交换器相似,也是将消息路由到 BindingKey 和 RoutingKey 相匹配的队列中,但这里的匹配规则有些不同,它约定:
- RoutingKey 为一个点号“.”分隔的字符串(被点号“.”分隔开的每一段独立的字符串称为一个单词),如 “com.rabbitmq.client”、“java.util.concurrent”、“com.hidden.client”;
- BindingKey 和 RoutingKey 一样也是点号“.”分隔的字符串;
- BindingKey 中可以存在两种特殊字符串“*”和“#”,用于做模糊匹配,其中“*”用于匹配一个单词,“#”用于匹配多个单词(可以是零个)。
以上图为例:
- 路由键为 “com.rabbitmq.client” 的消息会同时路由到 Queue1 和 Queue2;
- 路由键为 “com.hidden.client” 的消息只会路由到 Queue2 中;
- 路由键为 “com.hidden.demo” 的消息只会路由到 Queue2 中;
- 路由键为 “java.rabbitmq.demo” 的消息只会路由到 Queue1 中;
- 路由键为 “java.util.concurrent” 的消息将会被丢弃或者返回给生产者(需要设置 mandatory 参数),因为它没有匹配任何路由键。
④ headers(不推荐)
headers 类型的交换器不依赖于路由键的匹配规则来路由消息,而是根据发送的消息内容中的 headers 属性进行匹配。在绑定队列和交换器时指定一组键值对,当发送消息到交换器时,RabbitMQ会获取到该消息的 headers(也是一个键值对的形式),对比其中的键值对是否完全匹配队列和交换器绑定时指定的键值对,如果完全匹配则消息会路由到该队列,否则不会路由到该队列。headers 类型的交换器性能会很差,而且也不实用,基本上不会看到它的存在。
Kafka
1. Apache Kafka是什么?
Apach Kafka是一款分布式流处理平台,用于实时构建流处理应用。它有一个核心的功能广为人知,即作为企业级的消息引擎被广泛使用(通常也会称之为消息总线message bus)。
2. Kafka 的设计是什么样的?
Kafka 将消息以 topic 为单位进行归纳
将向 Kafka topic 发布消息的程序成为 producers.
将预订 topics 并消费消息的程序成为 consumer.
Kafka 以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个 broker.
producers 通过网络将消息发送到 Kafka 集群,集群向消费者提供消息
3. Kafka 如何保证高可用?
Kafka
的基本架构组成是:由多个 broker
组成一个集群,每个 broker
是一个节点;当创建一个 topic
时,这个 topic
会被划分为多个 partition
,每个 partition
可以存在于不同的 broker
上,每个 partition
只存放一部分数据。
这就是天然的分布式消息队列,就是说一个 topic
的数据,是分散放在多个机器上的,每个机器就放一部分数据。
在 Kafka 0.8
版本之前,是没有 HA
机制的,当任何一个 broker
所在节点宕机了,这个 broker
上的 partition
就无法提供读写服务,所以这个版本之前,Kafka
没有什么高可用性可言。
在 Kafka 0.8
以后,提供了 HA
机制,就是 replica
副本机制。每个 partition
上的数据都会同步到其它机器,形成自己的多个 replica
副本。所有 replica
会选举一个 leader
出来,消息的生产者和消费者都跟这个 leader
打交道,其他 replica
作为 follower
。写的时候,leader
会负责把数据同步到所有 follower
上去,读的时候就直接读 leader
上的数据即可。Kafka
负责均匀的将一个 partition
的所有 replica
分布在不同的机器上,这样才可以提高容错性。
拥有了 replica
副本机制,如果某个 broker
宕机了,这个 broker
上的 partition
在其他机器上还存在副本。如果这个宕机的 broker
上面有某个 partition
的 leader
,那么此时会从其 follower
中重新选举一个新的 leader
出来,这个新的 leader
会继续提供读写服务,这就有达到了所谓的高可用性。
写数据的时候,生产者只将数据写入 leader
节点,leader
会将数据写入本地磁盘,接着其他 follower
会主动从 leader
来拉取数据,follower
同步好数据了,就会发送 ack
给 leader
,leader
收到所有 follower
的 ack
之后,就会返回写成功的消息给生产者。
消费数据的时候,消费者只会从 leader
节点去读取消息,但是只有当一个消息已经被所有 follower
都同步成功返回 ack
的时候,这个消息才会被消费者读到。
4. Kafka 消息是采用 Pull 模式,还是 Push 模式?
生产者使用push模式将消息发布到Broker,消费者使用pull模式从Broker订阅消息。
push模式很难适应消费速率不同的消费者,如果push的速度太快,容易造成消费者拒绝服务或网络拥塞;如果push的速度太慢,容易造成消费者性能浪费。但是采用pull的方式也有一个缺点,就是当Broker没有消息时,消费者会陷入不断地轮询中,为了避免这点,kafka有个参数可以让消费者阻塞知道是否有新消息到达。
5. Kafka 与传统消息系统之间的区别
-
Kafka 持久化日志,这些日志可以被重复读取和无限期保留
-
Kafka 是一个分布式系统:它以集群的方式运行,可以灵活伸缩,在内部通过复制数据提升容错能力和高可用性
-
Kafka 支持实时的流式处理
6. 什么是消费者组?
消费者组是Kafka独有的概念,即消费者组是Kafka提供的可扩展且具有容错性的消费者机制。
但实际上,消费者组(Consumer Group)其实包含两个概念,作为队列,消费者组允许你分割数据处理到一组进程集合上(即一个消费者组中可以包含多个消费者进程,他们共同消费该topic的数据),这有助于你的消费能力的动态调整;作为发布-订阅模型(publish-subscribe),Kafka允许你将同一份消息广播到多个消费者组里,以此来丰富多种数据使用场景。
需要注意的是:在消费者组中,多个实例共同订阅若干个主题,实现共同消费。同一个组下的每个实例都配置有相同的组ID,被分配不同的订阅分区。当某个实例挂掉的时候,其他实例会自动地承担起它负责消费的分区。 因此,消费者组在一定程度上也保证了消费者程序的高可用性。
7. 在Kafka中,ZooKeeper的作用是什么?
目前,Kafka使用ZooKeeper存放集群元数据、成员管理、Controller选举,以及其他一些管理类任务。之后,等KIP-500提案完成后,Kafka将完全不再依赖于ZooKeeper。
- “存放元数据”是指主题分区的所有数据都保存在 ZooKeeper 中,且以它保存的数据为权威,其他 “人” 都要与它保持对齐。
- “成员管理” 是指 Broker 节点的注册、注销以及属性变更,等等。
- “Controller 选举” 是指选举集群 Controller,而其他管理类任务包括但不限于主题删除、参数配置等。
KIP-500 思想,是使用社区自研的基于Raft的共识算法,替代ZooKeeper,实现Controller自选举。
8. 解释下Kafka中位移(offset)的作用
在Kafka中,每个主题分区下的每条消息都被赋予了一个唯一的ID数值,用于标识它在分区中的位置。这个ID数值,就被称为位移,或者叫偏移量。一旦消息被写入到分区日志,它的位移值将不能被修改。
9. kafka 为什么那么快?
- Cache Filesystem Cache PageCache缓存
顺序写
:由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。Zero-copy
:零拷技术减少拷贝次数Batching of Messages
:批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。Pull 拉模式
:使用拉模式进行消息的获取消费,与消费端处理能力相符。
10. kafka producer发送数据,ack为0,1,-1分别是什么意思?
1
(默认) 数据发送到Kafka后,经过leader成功接收消息的的确认,就算是发送成功了。在这种情况下,如果leader宕机了,则会丢失数据。0
生产者将数据发送出去就不管了,不去等待任何返回。这种情况下数据传输效率最高,但是数据可靠性确是最低的。-1
producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。当ISR中所有Replica都向Leader发送ACK时,leader才commit,这时候producer才能认为一个请求中的消息都commit了。
11. Kafka如何保证消息不丢失?
首先需要弄明白消息为什么会丢失,对于一个消息队列,会有 生产者
、MQ
、消费者
这三个角色,在这三个角色数据处理和传输过程中,都有可能会出现消息丢失。
消息丢失的原因以及解决办法:
消费者异常导致的消息丢失
消费者可能导致数据丢失的情况是:消费者获取到了这条消息后,还未处理,Kafka
就自动提交了 offset
,这时 Kafka
就认为消费者已经处理完这条消息,其实消费者才刚准备处理这条消息,这时如果消费者宕机,那这条消息就丢失了。
消费者引起消息丢失的主要原因就是消息还未处理完 Kafka
会自动提交了 offset
,那么只要关闭自动提交 offset
,消费者在处理完之后手动提交 offset
,就可以保证消息不会丢失。但是此时需要注意重复消费问题,比如消费者刚处理完,还没提交 offset
,这时自己宕机了,此时这条消息肯定会被重复消费一次,这就需要消费者根据实际情况保证幂等性。
生产者数据传输导致的消息丢失
对于生产者数据传输导致的数据丢失主常见情况是生产者发送消息给 Kafka
,由于网络等原因导致消息丢失,对于这种情况也是通过在 producer 端设置 acks=all 来处理,这个参数是要求 leader
接收到消息后,需要等到所有的 follower
都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试。
Kafka 导致的消息丢失
Kafka
导致的数据丢失一个常见的场景就是 Kafka
某个 broker
宕机,,而这个节点正好是某个 partition
的 leader
节点,这时需要重新重新选举该 partition
的 leader
。如果该 partition
的 leader
在宕机时刚好还有些数据没有同步到 follower
,此时 leader
挂了,在选举某个 follower
成 leader
之后,就会丢失一部分数据。
对于这个问题,Kafka
可以设置如下 4 个参数,来尽量避免消息丢失:
- 给
topic
设置replication.factor
参数:这个值必须大于1
,要求每个partition
必须有至少2
个副本; - 在
Kafka
服务端设置min.insync.replicas
参数:这个值必须大于1
,这个参数的含义是一个leader
至少感知到有至少一个follower
还跟自己保持联系,没掉队,这样才能确保leader
挂了还有一个follower
节点。 - 在
producer
端设置acks=all
,这个是要求每条数据,必须是写入所有replica
之后,才能认为是写成功了; - 在
producer
端设置retries=MAX
(很大很大很大的一个值,无限次重试的意思):这个参数的含义是一旦写入失败,就无限重试,卡在这里了。
13. Kafka 如何保证消息的顺序性
在某些业务场景下,我们需要保证对于有逻辑关联的多条MQ消息被按顺序处理,比如对于某一条数据,正常处理顺序是新增-更新-删除
,最终结果是数据被删除;如果消息没有按序消费,处理顺序可能是删除-新增-更新
,最终数据没有被删掉,可能会产生一些逻辑错误。对于如何保证消息的顺序性,主要需要考虑如下两点:
- 如何保证消息在
Kafka
中顺序性; - 如何保证消费者处理消费的顺序性。
如何保证消息在 Kafka 中顺序性
对于 Kafka
,如果我们创建了一个 topic
,默认有三个 partition
。生产者在写数据的时候,可以指定一个 key
,比如在订单 topic
中我们可以指定订单 id
作为 key
,那么相同订单 id
的数据,一定会被分发到同一个 partition
中去,而且这个 partition
中的数据一定是有顺序的。消费者从 partition
中取出来数据的时候,也一定是有顺序的。通过制定 key
的方式首先可以保证在 kafka
内部消息是有序的。
如何保证消费者处理消费的顺序性
对于某个 topic
的一个 partition
,只能被同组内部的一个 consumer
消费,如果这个 consumer
内部还是单线程处理,那么其实只要保证消息在 MQ
内部是有顺序的就可以保证消费也是有顺序的。但是单线程吞吐量太低,在处理大量 MQ
消息时,我们一般会开启多线程消费机制,那么如何保证消息在多个线程之间是被顺序处理的呢?对于多线程消费我们可以预先设置 N
个内存 Queue
,具有相同 key
的数据都放到同一个内存 Queue
中;然后开启 N
个线程,每个线程分别消费一个内存 Queue
的数据即可,这样就能保证顺序性。当然,消息放到内存 Queue
中,有可能还未被处理,consumer
发生宕机,内存 Queue
中的数据会全部丢失,这就转变为上面提到的如何保证消息的可靠传输的问题了。
14. Kafka中的ISR、AR代表什么?ISR的伸缩指什么?
ISR
:In-Sync Replicas 副本同步队列AR
:Assigned Replicas 所有副本
ISR是由leader维护,follower从leader同步数据有一些延迟(包括延迟时间replica.lag.time.max.ms
和延迟条数replica.lag.max.messages
两个维度,当前最新的版本0.10.x中只支持replica.lag.time.max.ms
这个维度),任意一个超过阈值都会把follower剔除出ISR,存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。
AR=ISR+OSR。
15. 描述下 Kafka 中的领导者副本(Leader Replica)和追随者副本(Follower Replica)的区别
Kafka副本当前分为领导者副本和追随者副本。只有Leader副本才能对外提供读写服务,响应Clients端的请求。Follower副本只是采用拉(PULL)的方式,被动地同步Leader副本中的数据,并且在Leader副本所在的Broker宕机后,随时准备应聘Leader副本。
加分点:
- 强调Follower副本也能对外提供读服务。自Kafka 2.4版本开始,社区通过引入新的Broker端参数,允许Follower副本有限度地提供读服务。
- 强调Leader和Follower的消息序列在实际场景中不一致。通常情况下,很多因素可能造成Leader和Follower之间的不同步,比如程序问题,网络问题,broker问题等,短暂的不同步我们可以关注(秒级别),但长时间的不同步可能就需要深入排查了,因为一旦Leader所在节点异常,可能直接影响可用性。
注意:之前确保一致性的主要手段是高水位机制(HW),但高水位值无法保证Leader连续变更场景下的数据一致性,因此,社区引入了Leader Epoch机制,来修复高水位值的弊端。
16. 分区Leader选举策略有几种?
分区的Leader副本选举对用户是完全透明的,它是由Controller独立完成的。你需要回答的是,在哪些场景下,需要执行分区Leader选举。每一种场景对应于一种选举策略。
- OfflinePartition Leader选举:每当有分区上线时,就需要执行Leader选举。所谓的分区上线,可能是创建了新分区,也可能是之前的下线分区重新上线。这是最常见的分区Leader选举场景。
- ReassignPartition Leader选举:当你手动运行kafka-reassign-partitions命令,或者是调用Admin的alterPartitionReassignments方法执行分区副本重分配时,可能触发此类选举。假设原来的AR是[1,2,3],Leader是1,当执行副本重分配后,副本集合AR被设置成[4,5,6],显然,Leader必须要变更,此时会发生Reassign Partition Leader选举。
- PreferredReplicaPartition Leader选举:当你手动运行kafka-preferred-replica-election命令,或自动触发了Preferred Leader选举时,该类策略被激活。所谓的Preferred Leader,指的是AR中的第一个副本。比如AR是[3,2,1],那么,Preferred Leader就是3。
- ControlledShutdownPartition Leader选举:当Broker正常关闭时,该Broker上的所有Leader副本都会下线,因此,需要为受影响的分区执行相应的Leader选举。
这4类选举策略的大致思想是类似的,即从AR中挑选首个在ISR中的副本,作为新Leader。
17. Kafka的哪些场景中使用了零拷贝(Zero Copy)?
在Kafka中,体现Zero Copy使用场景的地方有两处:基于mmap的索引和日志文件读写所用的TransportLayer。
先说第一个。索引都是基于MappedByteBuffer的,也就是让用户态和内核态共享内核态的数据缓冲区,此时,数据不需要复制到用户态空间。不过,mmap虽然避免了不必要的拷贝,但不一定就能保证很高的性能。在不同的操作系统下,mmap的创建和销毁成本可能是不一样的。很高的创建和销毁开销会抵消Zero Copy带来的性能优势。由于这种不确定性,在Kafka中,只有索引应用了mmap,最核心的日志并未使用mmap机制。
再说第二个。TransportLayer是Kafka传输层的接口。它的某个实现类使用了FileChannel的transferTo方法。该方法底层使用sendfile实现了Zero Copy。对Kafka而言,如果I/O通道使用普通的PLAINTEXT,那么,Kafka就可以利用Zero Copy特性,直接将页缓存中的数据发送到网卡的Buffer中,避免中间的多次拷贝。相反,如果I/O通道启用了SSL,那么,Kafka便无法利用Zero Copy特性了。
18. 为什么Kafka不支持读写分离?
在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。
Kafka 并不支持主写从读,因为主写从读有 2 个很明 显的缺点:
- 数据一致性问题。数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。
- 延时问题。类似 Redis 这种组件,数据从写入主节点到同步至从节点中的过程需要经历
网络→主节点内存→网络→从节点内存
这几个阶段,整个过程会耗费一定的时间。而在 Kafka 中,主从同步会比 Redis 更加耗时,它需要经历网络→主节点内存→主节点磁盘→网络→从节点内存→从节点磁盘
这几个阶段。对延时敏感的应用而言,主写从读的功能并不太适用。
参考
http://dockone.io/article/10853
https://segmentfault.com/a/1190000023716306
https://dongzl.github.io/2020/03/16/13-Solve-MQ-Problem-With-Kafka/index.html